Exercise 72

At what numbers is the following function g differentiable?

$$
g(x)= \begin{cases}2 x & \text { if } x \leq 0 \\ 2 x-x^{2} & \text { if } 0<x<2 \\ 2-x & \text { if } x \geq 2\end{cases}
$$

Give a formula for g^{\prime} and sketch the graphs of g and g^{\prime}.

Solution

Below is a graph of $g(x)$ versus x.

Although the function is continuous, there's a kink in the curve at $x=2$, which means its slope (or derivative) is undefined there. That is, g is not differentiable at 2 . The derivative of g is

$$
g^{\prime}(x)= \begin{cases}2 & \text { if } x \leq 0 \\ 2-2 x & \text { if } 0<x<2 \\ -1 & \text { if } x>2\end{cases}
$$

and its graph versus x is shown below.

